报告题目:Spare Resultants for Differential and Difference Polynomial Equations
讲座时间:2023年10月24日下午14:00--15:00
讲座地点:腾讯会议 956180906
报告人:李伟
摘要:The (sparse) resultant gives conditions for an over-determined system of polynomial equations to have common solutions. As a basic concept in algebraic geometry, the (sparse) resultant also emerges to be one of the most powerful computational tools in (sparse) elimination theory due to its ability to eliminate several variables simultaneously. In the recent years, we developed theories of sparse differential resultants and sparse difference resultants, which extended the core theory of sparse resultants into algebraic differential and difference equations. Meanwhile, many new problems have arisen. In this talk, I will give an overview of the theory and algorithmic aspects of sparse differential resultants as well as sparse difference resultants, and present several open problems.
报告人简介:李伟,中国科学院数学与系统科学研究院副研究员。本科毕业于山东大学,博士毕业于中科院数学与系统科学研究院,美国加州大学伯克利分校访问学者。主持国家自然科学基金委优秀青年基金;曾获国际计算机协会(ACM) SIGSAM/ISSAC杰出论文奖、吴文俊计算机数学青年学者奖、中科院优秀博士学位论文、入选中科院青年创新促进会、中科院数学院“陈景润未来之星”等。研究方向为微分代数几何、符号计算,主要成果包括:与合作者建立了微分周形式与微分周簇理论,发展了稀疏微分结式的理论及单指数消元算法,证明了微分-差分方程的有效Hilbert零点定理。成果主要发表在Found. Comput. Math., Trans. Amer. Math. Soc., J. London Math. Soc., J. Symb. Comput.等期刊。
主办:研究生院
承办:3044永利集团最新链接